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ABSTRACT
c-Met, the receptor for hepatocyte growth factor (HGF), is cell surface tyrosine kinase that controls cancer cell growth, survival, invasion, and

metastasis. Post-translational modification, such as glycosylation, plays an essential role in regulating the function of cell surface molecules.

Whether glycosylation modification regulates the enzymatic properties of c-Met is unknown. In this study, we investigated the effect of

glycosylation on the function of c-Met. We found that c-Met is an N-linked glycosylated protein. Both pro-Met and p145Met (the b subunit of

mature c-Met) have N-linked glycosylation. Glycosylation inhibitor studies revealed that the N-glycosylation modification of p145Met is

from pro-Met, but not due to the further modification of pro-Met. Importantly, blocking theN-glycosylation targets pro-Met to cytoplasm and

initiates its phosphorylation independent of HGF engagement. Nonglycosylated pro-Met activates c-Met downstream pathways to a certain

extent to compensate for the degradation of p145Met induced by glycosylation blocking-mediated endoplasmic reticulum (ER) stress. J. Cell.

Biochem. 114: 816–822, 2013. � 2012 Wiley Periodicals, Inc.
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H epatocyte growth factor (HGF) receptor, c-Met, is a trans-

membrane tyrosine kinase. Phosphorylation on Tyr-1234/

1235 residues are crucial for c-Met activation, whereas phosphory-

lation on Tyr-1349/1356 residues are essential for c-Met to form the

docking site and activate its downstream signaling pathways

[Ferracini et al., 1991; Dai et al., 2012]. Upon HGF binding,

Tyr-1234/1235 residues in the catalytic domain of c-Met are

phosphorylated and the receptor is activated. Once activated, c-Met

activates multiple downstream signaling pathways, including the

PI3K/Akt and MEK/ERK pathways [Boccaccio and Comoglio, 2006;

You et al., 2011; Dai et al., 2012]. Through these intermediary

pathways, HGF/c-Met governs a diversity of important cellular

responses, including proliferation, differentiation, and migration

[Gay et al., 1999; Boccaccio and Comoglio, 2006; Forte et al., 2006].

Deregulation of HGF/c-Met signaling is implicated in the develop-

ment and metastasis of many types of human tumor [Ueki et al.,

1997; Wang et al., 2001; Boccaccio and Comoglio, 2006; Benvenuti

and Comoglio, 2007; Bellon et al., 2008; You et al., 2011].

Both transcriptional and post-translational mechanisms control

the expression of c-Met and its roles in extracellular signaling

transduction. It has been reported that aberrant activation of c-Met

is strongly associated with overexpression of the receptor without

HGF engagement [Desiderio, 2007; You et al., 2011]. c-Met

undergoes post-translational modification, including glycosylation,

disulfide bonds formation and endoproteolytic cleavage. c-Met

is initially synthesized as a partially glycosylated single-chain

precursor (pro-Met) in the endoplasmic reticulum (ER). Pro-Met

undergoes disulfide bonds formation, posttranslational glycosyla-
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tion, and endoproteolytic cleavage to produce the mature

heterodimeric form of c-Met (p190Metab) [Giordano et al., 1989].

p190Metab consists of a 50-kDa a subunit (p50Met) and a 145-kDa b

subunit (p145Met) which are joined by disulfide bonds. The a

subunit is entirely extracellular, while the b subunit spans the

membrane and contains the tyrosine kinase catalytic domain

[Giordano et al., 1989].

In this study, we investigated the roles of glycosylation in c-Met

function. We found that c-Met undergoes N-linked but not O-linked

glycosylation. Interestingly, N-linked glycosylation (N-glycosyla-

tion) blocking targets pro-Met to cytoplasm and initiates its

phosphorylation. Moreover, cytoplasm located pro-Met cannot

activate c-Met downstream pathways as effectively as mature c-Met.

These data indicate thatN-glycosylation modification is required for

the effective function of c-Met.

MATERIALS AND METHODS

MATERIALS

Tunicamycin (Tun, inhibitor of N-glycosylation), N-glycanase,

O-glycanase, MG132 (proteasome inhibitor), and cycloheximide

(CHX, protein synthesis inhibitor) were purchased from Sigma

Chemical Company. The c-Met inhibitor PF-2341066 was purchased

from Selleck Chemicals. Antibodies against c-Met, GRP78, and

b-actin were purchased from Santa Cruz Biotechnology. Antibodies

against phospho-Akt (Ser-473), phospho-ERK (Thr-202/Tyr204),

phospho-Met (Tyr-1234/1235/1349), Akt, ERK, and were purchased

from Cell Signaling Technology.

CELL CULTURE AND TREATMENTS

Human HCC cell line MHCC-97H and human cholangiocarcinoma

cell line RBE were cultured in Dulbecco’s Modified Eagle Medium

supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin in a humidified incubator containing 5% CO2 and 95%

ambient air at 378C.

WESTERN BLOT

Cells were lysed in Triton lysis buffer (20mM Tris, pH 7.4, 137mM

NaCl, 10% glycerol, 1% Triton X-100, 2mM EDTA, 1mM PMSF,

10mM NaF, 5mg/ml aprotinin, 20mM leupeptin, and 1mM sodium

orthovanadate) and centrifuged at 12,000g for 15min. Protein

concentrations were measured using the BCA assay. Protein samples

were denatured with 4� SDS-loading buffer (200mM Tris, pH 6.8,

8% SDS, 400mM DTT, 0.4% bromophenol blue, 40% glycerol) at

1008C for 5min and subjected to standard SDS–PAGE and Western

blot analysis as previously described [Dai et al., 2009].

DEGLYCOSYLATION

Deglycosylation was performed according to the manufacturer’s

manual. A denaturation process was required for the deglycosyla-

tion of glucose oxidase. For treatment with N-glycanase/

O-glycanase, 20ml of G7 buffer, 20ml of 10% Nonidet P-40, and

5ml of N-glycanase/O-glycanase were added, and the mixture was

incubated at 378C for 3 h. The deglycosylated protein samples were

subjected to standard SDS–PAGE and Western blot analysis.

IMMUNOFLUORESCENCE STAINING AND CONFOCAL

MICROSCOPY ANALYSIS

Cells were re-plated on chamber slides. When cultured to 60%

confluence, cells that were incubated with anti-phospho-Met and

anti-Met antibodies conjugated to CY3 (Invitrogen) for immuno-

fluorescence and confocal microscopy assay.

HUMAN HGF ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)

A total of 5� 106 cells were cultured in 2ml of RPMI-1640 medium

in 60-mm culture dishes for 24 h and medium was collected. The

HGF concentration was measured using human HGF ELISA kit (R&D

systems) according to manufacturer’s protocol.

MUTATION ANALYSIS

Total RNA was isolated with TRIzol reagent (Invitrogen) according

to manufacturer’s protocol. Complementary single strand DNA was

Fig. 1. c-Met expression and its downstream pathways. A: Western blot analysis of phosphorylation and protein levels of c-Met in MHCC-97H and RBE cells. B: c-Met

inhibition inhibits PI3K/Akt and MEK/ERK activation. After treated with PF-2341066 (PF, 100 nM) for indicated time periods, MHCC-97H and RBE cells were subjected to

Western blot analysis.
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synthesized using an omniscript RT kit (Qiagen). The primers used in

this study were as follows: sense primer, 50-CTTTGTGAGCA-
GATGCGGAG-30 and anti-sense primer, 50-CAGGTATAGGCAGT-
GACAAG-30. PCR product was purified using a QIAquick Gel

Extraction kit (Qiagen) and sequenced at Beijing Genomics Institute

(BGI). Sequencing results were compared to human c-Met gene

sequence using blast alignment analysis.

RESULTS

c-Met EXPRESSION AND ITS DOWNSTREAM PATHWAYS

First, we examined the expression of phosphorylated and non-

phosphorylated c-Met in MHCC-97H and RBE cells. As shown in

Figure 1A, MHCC-97H and RBE cells showed strong expression and

constitutive phosphorylation of c-Met. As PI3K/Akt and MEK/ERK

are two typical downstream pathways of c-Met [Boccaccio and

Comoglio, 2006; You et al., 2011; Dai et al., 2012], we tested

whether the phosphorylation of Akt and ERK are c-Met-dependent

in MHCC-97H and RBE cells. The results showed that c-Met inhibitor

PF-2341066 obviously decreased the basal activation of Akt

and ERK (Fig. 1B), indicating that PI3K/Akt and MEK/ERK are

downstream pathways of c-Met in MHCC-97H and RBE cells.

Since HGF is the natural ligand for c-Met activation, we

investigated whether the basal activation of c-Met was due to

autocrine secretion of HGF. The enzyme-linked immunosorbent

assay (ELISA) analysis failed to demonstrate any HGF secreted by

MHCC-97H and RBE cells (data not shown). As the mutations in c-

Met gene correlate with the auto-activation of this receptor in

multiple different cancers [Jeffers et al., 1997, 1998; Schmidt et al.,

1999], we investigated whether the activation of c-Met in MHCC-

97H and RBE cells was due to a mutation. Sequencing of the c-Met

gene demonstrated none of the reported mutations was found in

MHCC-97H and RBE cells (data not shown). Taken together, these

results suggest that sustained high basal activation of c-Met in

MHCC-97H and RBE cells independent of HGF production and gene

mutation.

Fig. 2. c-Met is an N-linked glycosylated protein. Following digested with N-

glycanase and O-glycanase, samples of MHCC-97H and RBE cells were analyzed

via Western blot.

Fig. 3. N-linked glycosylation of Pro-Met responsible for the glycosylation modification of c-Met. A: Tunicamycin inhibits pro-Met glycosylation. After treated with

tunicamycin (Tun, 2.5mg/ml) for indicated time periods, MHCC-97H and RBE cells were subjected to Western blot analysis. B: Glucose deprivation inhibits pro-Met

glycosylation. After incubated in glucose-deficient culture media for indicated time periods, MHCC-97H and RBE cells were subjected toWestern blot analysis. C: Cycloheximide

inhibits the expression of nonglycosylated pro-Met upon tunicamycin treatment. After treated with tunicamycin (Tun, 2.5mg/ml) for indicated time periods with or without

cycloheximide (CHX, 10mM) pre-incubation for 1 h, MHCC-97H and RBE cells were subjected to Western blot analysis. D: MG132 inhibits tunicamycin-induced p145Met

degradation. After treated with tunicamycin (Tun, 2.5mg/ml) for 24 h with or without MG132 (MG, 20mM) pre-incubation for 1 h, MHCC-97H and RBE cells were subjected to

Western blot analysis.
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c-Met IS AN N-LINKED GLYCOSYLATED PROTEIN

To investigate the effect of glycosylation on the function of c-Met,

we analyzed the N-glycosylation and O-glycosylation modification

of c-Met in MHCC-97H and RBE cells. NetNGlyc, a glycosylation

analysis program (http://www.cbs.dtu.dk/services/NetNGlyc/), pre-

dicts that c-Met has multiple N-linked but not O-linked glycosyla-

tion sites. Consistent with this prediction, we observed a discrepancy

in the molecular mass of pro-Met and p145Met and their mobility

on SDS gels upon N-glycanase treatment (Fig. 2). However,

O-glycanase treatment had no effect on this molecular mass shift

of pro-Met and p145Met (Fig. 2), indicating that c-Met is an

N-linked but not O-linked glycosylated protein.

PRO-MET RESPONSIBLE FOR N-LINKED GLYCOSYLATION OF c-Met

Since both pro-Met and p145Met are glycosylated, it is interest to

analyze the more detailed mechanism of c-Met glycosylation. To

investigate whether pro-Met undergoes further glycosylation to

yield p145Met, tunicamycin, an inhibitor of N-linked glycosylation,

was used in our study. The results showed that tunicamycin

treatment caused a progressive shift in pro-Met molecular mass over

a period of 3–48 h (Fig. 3A), confirming that pro-Met is an N-

glycosylated protein. It is notable that tunicamycin did not cause a

shift in p145Met molecular mass (Fig. 3A), indicating that pro-Met

does not undergo further N-glycosylation after its translation. The

results that glycosylated pro-Met responsible for N-linked glyco-

sylation modification of c-Met was confirmed by our data which

showed that glucose deprivation resulted in a progressive shift in

the molecular mass of pro-Met, but not in p145Met (Fig. 3B).

Furthermore, protein synthesis inhibitor CHX pre-treatment blocked

tunicamycin-mediated nonglycosylated pro-Met induction

(Fig. 3C), confirming that pro-Met synthesis responsible for the

post-translational N-glycosylation of c-met.

In addition to inhibiting pro-Met glycosylation, tunicamycin

treatment also led to a marked reduction in protein level of p145Met

in a time-dependent manner (Fig. 3A,B). Incubation of MHCC-97H

and RBE cells with tunicamycin induced the induction of ER stress

biomarker glucose-regulated protein 78 (GRP78; Fig. 3A,C),

indicating the activation of ER stress response. As tunicamycin

induces ER stress through inhibiting N-linked glycosylation, it is

reasonable that tunicamycin promotes p145Met degradation

through ER stress associated degradation. This notion is supported

by the data that proteasome inhibitor MG132 inhibited tunicamy-

cin-induced p145Met degradation (Fig. 3D). Furthermore, MG132

inhibited tunicamycin-induced p145Met degradation without

Fig. 4. Glycosylation blocking initiates the phosphorylation of pro-Met. A: Tunicamycin initiates pro-Met phosphorylation. After treated with tunicamycin (Tun, 2.5mg/ml)

for indicated time periods, MHCC-97H and RBE cells were subjected to Western blot analysis. B: PF-2341066 inhibits tunicamycin-induced pro-Met phosphorylation. After

treated with tunicamycin (Tun, 2.5mg/ml) for indicated time periods with or without PF-2341066 (PF, 100 nM) pre-incubation for 1 h, MHCC-97H and RBE cells were

subjected to Western blot analysis. C: PF-2341066 blocks the activity of nonglycosylated pro-Met and inhibits PI3K/Akt and MEK/ERK phosphorylation. After treated with

tunicamycin (Tun, 2.5mg/ml) for 24 h with or without PF-2341066 (PF, 100 nM) pre-incubation for 1 h, MHCC-97H and RBE cells were subjected to Western blot analysis.
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nonglycosylated p145Met induction (Fig. 3D) confirmed the notion

that pro-Met does not undergo further glycosylation to yield

p145Met.

DEGLYCOSYLATION INITIATES THE PHOSPHORYLATION

OF PRO-MET

As N-glycosylation plays an important role in the function of cell

surface molecules, we addressed whether N-glycosylation regulates

the phosphorylation of pro-Met. As shown in Figure 4A, pro-Met

cannot be detected by antibodies against phosphorylated form of c-

Met, indicating that pro-Met is not phosphorylated in MHCC-97H

and RBE cells. Interestingly, tunicamycin-induced nonglycosylated

pro-Met was detected by antibodies against phosphorylated form of

c-Met, suggesting that the nonglycosylated pro-Met is phosphory-

lated (Fig. 4A). Furthermore, the phosphorylation of nonglycosy-

lated pro-Met was blocked by c-Met inhibitor PF-2341066 (Fig. 4B).

To investigate the function of nonglycosylated pro-Met, we

analyzed the effect of N-glycosylation blocking on c-Met

downstream pathways. As shown in Fig. 4C, tunicamycin treatment

decreased the phosphorylation levels of Akt and ERK in MHCC-97H

and RBE cells. More importantly, c-Met inhibitor PF-2341066 not

only blocked the phosphorylation of nonglycosylated pro-Met but

also decreased the phosphorylated Akt and ERK in tunicamycin-

treated MHCC-97H and RBE cells (Fig. 4C). Together, these data

suggest that nonglycosylated pro-Met can activate, at least in part,

c-Met downstream pathways.

GLYCOSYLATION IS REQUIRED FOR c-Met MEMBRANE TARGETING

To test the role of N-glycosylation in the cellular location of c-Met,

we investigated the cellular localization of c-Met in tunicamycin-

treatedMHCC-97H cells. First, we monitored the location of c-Met in

MHCC-97H cells. As shown in Figure 5A,B, both phosphorylated and

non-phosphorylated c-Met were membrane targeting in DMSO-

treated MHCC-97H cells. After treated with tunicamycin for 24 h,

both phosphorylated and non-phosphorylated pro-Met accumulat-

ed in the cytoplasm in MHCC-97H cells (Fig. 5A,B). Hence,

N-glycosylation is required for c-Met membrane targeting.

DISCUSSION

Glycosylation is a critical step in the maturation of the majority of

the proteins that traffic through the ER [Hebert and Molinari, 2007].

N-linked glycosylation is often essential for the folding, intracellu-

lar transport, secretion, and function of glycoproteins [Branza-

Nichita et al., 2004; Ambasta et al., 2007]. In this study, we

investigated the effect of glycosylation on c-Met function. Our data

demonstrated that c-Met is an N-glycosylated protein, and N-

glycosylation is an essential post-translational modification

mechanism for the function of c-Met.

Glycosylation of c-Met was removed by N-glycanase but not by

O-glycanase, indicating that c-Met is an N-glycosylated protein.

Considering that both pro-Met and p145Met, which is processed

Fig. 5. Glycosylation is required for c-Met membrane targeting. A: Localization of c-Met in MHCC-97H cells. After treated with dimethyl sulfoxide (DMSO) or tunicamycin

(Tun, 2.5mg/ml) for 24 h, MHCC-97H cells were subjected to immunofluorescence staining and confocal microscopy analysis. B: Localization of phosphorylated c-Met in

MHCC-97H cells. After treated with dimethyl sulfoxide (DMSO) or tunicamycin (Tun, 2.5mg/ml) for 24 h, MHCC-97H cells were subjected to immunofluorescence staining and

confocal microscopy analysis.
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from pro-Met, were N-glycosylated proteins, we asked whether pro-

Met is further glycosylated to yield p145Met. Based on the data that

N-glycosylation inhibitor tunicamycin inhibited N-glycosylation of

pro-Met without p145Met N-glycosylation inhibition, we suggest

that c-Met is initially synthesized as anN-glycosylated pro-Met, and

pro-Met does not undergo further glycosylation to yield p145Met.

Thus, the c-Met mRNA is translated into an N-glycosylated pro-Met

in ER under physiological conditions, and the pro-Met folds into

a structure stabilized by intra-chain disulfide bonds without

further glycosylation. Then, the pro-Met is cleaved by a protease

to originate mature c-Met.

MHCC-97H and RBE cells express high levels of phosphorylated

c-Met without HGF autocrine and gene mutation. Interestingly,

nonglycosylated pro-Met was detected by antibodies against

phosphorylated form of c-Met in MHCC-97H and RBE cells. As

pro-Met was not phosphorylated in MHCC-97H and RBE cells, it is

reasonable to suggest that removal of N-glycosylation initiates the

phosphorylation of pro-Met. As nonglycosylated pro-Met is

phosphorylated on Tyr-1234/1235/1349 independent of HGF

engagement, it is interesting to investigate the function of

nonglycosylated pro-Met. Since the activation of c-Met downstream

pathways PI3K/Akt and MEK/ERK were c-Met-dependent in MHCC-

97H and RBE cells, the function of nonglycosylated pro-Met can be

analyzed through investigating the effect of nonglycosylated pro-

Met on PI3K/Akt and MEK/ERK activation. As blocking non-

glycosylated pro-Met by c-Met inhibitor PF-2341066 inhibited the

phosphorylation of PI3K/Akt and MEK/ERK in tunicamycin-treated

MHCC-97H and RBE cells, it is reasonable to suggest that

nonglycosylated pro-Met sustains the activation of c-Met down-

stream pathways, such as PI3K/Akt and MEK/ERK, to a certain

extent.

An important question now before us is why nonglycosylated

pro-Met but not glycosylated pro-Met can be phosphorylated. Under

physiological conditions, the c-Met mRNA is translated into N-

glycosylated pro-Met in ER. Within a few minutes, N-glycosylated

pro-Met folds into a structure stabilized by intra-chain disulfide

bonds in ER. Then, the pro-Met is cleaved by a protease to originate

membrane targeting c-Met. Thus, pro-Met is located in the ER in the

process of c-Met maturation, and it is reasonable to suppose that

pro-Met cannot be phosphorylated in the ER. However, removing

the N-glycosylation of pro-Met inhibits its further procession and

maturation. It has been accepted that unfolded protein will be

exported to the cytosol and subsequently degradated by ubiquitin

proteasome system [Eisele andWolf, 2008]. As we demonstrated that

nonglycosylated pro-Met is translocated to cytoplasm. Thus, it is

reasonable to suggest that cytoplasm location results in the

phosphorylation of nonglycosylated pro-Met. Considering that

membrane targeting is critical for c-Met to activate its downstream

pathways, we speculate that nonglycosylated pro-Met cannot

effectively activate c-Met downstream pathways duo to its

cytoplasm location.

In brief, the present work reveals that N-glycosylation is required

for c-Met function. N-glycosylation blocking attenuates c-Met

function, at least in part, through inhibiting its cell membrane

targeting (Fig. 6). Future studies of the role of specific N-

glycosylation sites may provide further insights into the regulatory

functions of glycosylation in c-Met trafficking and signaling

functions.
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